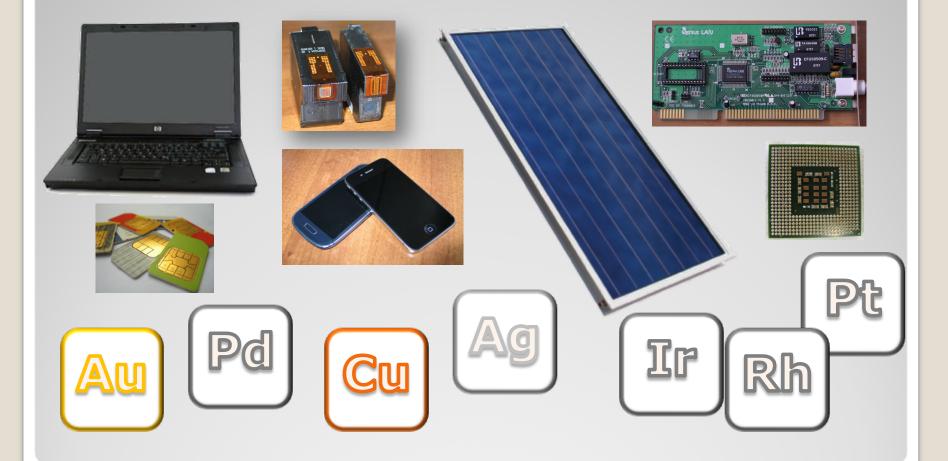
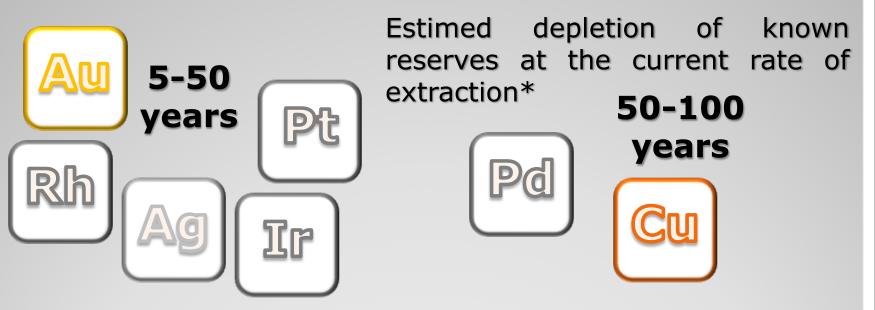
INNOVATIVE HYDROMETALLURGICAL TREATMENTS OF WEEE

SOS.TE.N.ERE


ITIA-CNR 29/01/2018

A. Serpe

Dip. di Ingegneria Civile, Ambientale ed Architettura (DICAAR) University of Cagliari serpe@unica.it



NM are crucial components of several Electric and Electronic Equipments (EEE)

Noble-Metals (NM) based technologies

NM reserves will be deplated in few years

Most of them are listed as critical metals by EU**

*RSC Green Chemistry Element Recovery and Sustainability, N. 22, 2013, Chapter 1, Hunt
**Report of the Ad-hoc Working Group on defining critical raw materials, 30 July 2010 and May 2014.

Estimed depletion of raw materials

- No longer working
- no longer interesting
- no longer performing
 - ... Hi-Tech goods!

- Fast technological development \rightarrow Reduces lifespan & increases demand for Hi-Tech goods 2014
- Planned obsolescence

High rate of element consumption & WEEE accumulation **41.8M t/year worldwide** (5% all municipal waste)

9.1M t/year in EU

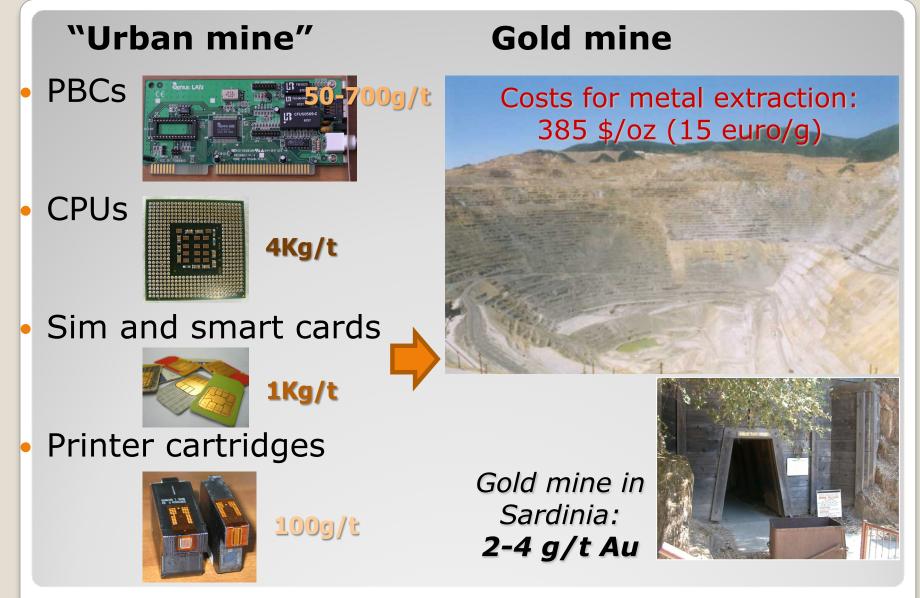
3-5% growth/year

Waste EEE (WEEE)

The worldwide fastest growing waste stream! General scope: preserving the environment and natural sources; limiting or avoiding hazardous substances

Objective: limiting WEEE to be disposed of, by promoting recovery.

EU waste management priorities:


- prevention or reduction of waste
- recovery of waste
- waste as a source of energy improved by:
- product design to limit hazardous substances and favour material recovery.
- <u>safe processes</u> for waste recovery or disposal.

European Directives: 91/156/EC on waste management 2012/19/EU on WEEE 2011/65/EU on restriction of the use of certain hazardous substances in EEE (RoHS)

"polluter pays" and "producer responsibility" principles

Collection rate: 85% of generated WEEE (~20Kg/year per capita)

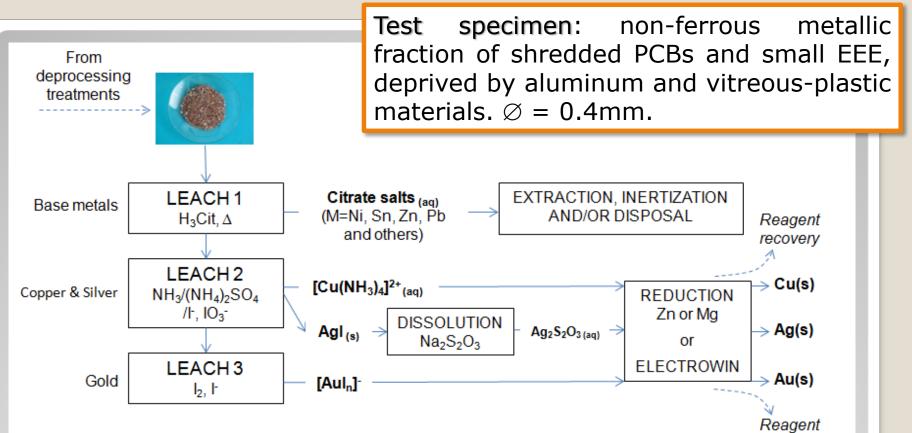
EU Directives on Waste Management

Gold in WEEE vs MINES

WEEE are valuable secondary source of NMs

• "Volatile" quotation and high price (euro/g, 28/01/'18): Au 35; Rh 44; Pt 26; Pd 28; Ag 0.45

Recovery rates of NMs from wastes still too low


~ 30% Au; 12% Ag; 27% Pd; 22% Pt, in 2015

NMs recovery from WEEE mainly performed by using hazardous and/or polluting processes "inherited" by ore reclamation

NEED OF

Robust, versatile and "green" processes to achieve economical-technical-environmental sustainability for NMs recovery in a Circular Economy model.

From "trash" to "resource"

recovery

Green Chemistry, 2015, 17 (4), 2208.

- •NM recovery occurs in an almost quantitative yield
- Reagents can be recycled
- Safe reagents and mild reaction conditions

Sustainable NM recovery method for WEEE

Jointly by companies:					
Activity		Phase			
Selection of PBCs as target WEEE	Abundant and NM-rich waste stream				
Characterization of the different typologies of existing PCBs	Lack of a robust and detailed database	1			
Selection of the target PCB	In terms of NM content and sample availability				
Collection and shredding of the test specimen	Low cost milling treatment	2			
NM Leaching & recovery process	Effect of grain size and interfering materials				
Scale-up on pilot plant	#R #G #M	3			

Technology transfer

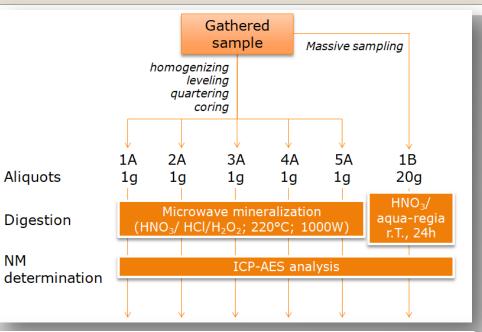
Selection and pre-treatments

			Weight af	ter shredding		
Typology	n.	Starting weight [g]	First stage [g]	Second stage [g]	Weight loss %	Elements removed before shredding
DVD/CD players PCBs	7	220,0	220,0	214,8	2,1	Motors and rotating supports (334 g)
NICs ^a	13	642,6	639,6	635,1	1,2	Fasteners (14,4 g)
RAM ^b white fingers	50	703,3		702,6	0,1	
RAM ^b gold fingers	40	676,5		667,1	1,4	
Hard drive PCBs	5	98,3	98,0	95,5	2,9	Heads and motors (768.3 g)
Mother boards ^c	5	2525,4	2510,8	2486,7	1,5	
TV PCBs	5	1985,3		1947,4	1,9	Ferrous parts (142,3 g)
Mobile phone PCBs	30	695,7		694,1	0,2	

^aNetwork Integrated Controllers; ^bRandom Access Memories; ^cShredded with connectors

1st stage: single shaft shredder comminution (output: $\emptyset = 10$ mm).

2nd stage: cutting mill (1500 rpm; meshed grid: 2 mm, hardmetal tools).


Internal cleaning of the machine was performed after each treatment, in order to avoid contamination and loss of precious materials.

Phase 1: Characterization of PCBs

Sampling

Digestion

ICP-AES analysis

	Sample NMs content - %(SD)								
	·	Pd	Au	Âg	Cu				
	DVD/CD players PCBs	<0.01*	0.01(±0.01)	0.08(±0.05)	16.2(±4.4)				
	NICs	<0.01*	0.02(±0.01)	0.03(±0.01)	19.1(±2.3)				
	RAM white fingers	0.04(±0.03)	0.03(±0.01)	0.10(±0.06)	16.6(±1.9)				
	RAM gold fingers	0.01(±0.01)	0.07(±0.01)	0.05(±0.01)	17.1(±1.2)				
	Hard drive PCBs	0.02(±0.02)	0.03(±0.01)	0.06(±0.05)	23.6(±4.9)				
	Mother boards	<0.01*	0.01(±0.01)	0.04(±0.02)	26.7(±5.4)				
\mathbf{r}	TV PCBs	<0.01*	<0.01*	0.03 (±0.01)	13.0(±7.4)				
	Mobile phone PCBs	0.06(±0.02)	0.07 (±0.01)	0.14 (±0.25)	33.8(±1.1)				
	*The concentration of this element is lower than the Limit of Detection of the measure								

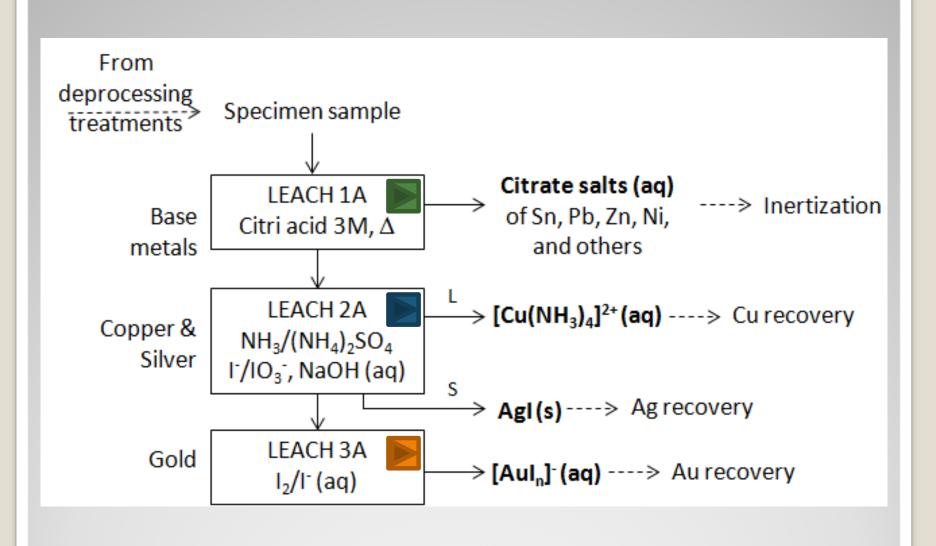
'The concentration of this element is lower than the Limit of Detection of the measure.

Phase 1: Characterization of PCBs

Shredding Cha	racterizatio	n
→ Ball milling → • 24h, r.T. • stainless steel jar	106 94 Presence o	cle size dispersion: g Ø <2mm g Ø>2mm f composite astic material
Image: planetary apparatus: 4-stages mill, 300rpm •hardmetal balls: Ø 6 mm, 1.4Kg	Element	RAM #R#G#M Content %(SD)
•Carbsyn: 250mL 🛟	Au	0.08 (±0.03)
	Ag	0.04 (±0.01)
	Pd	0.06 (±0.04)
	Cu	15 (±1)
	Ni	4.2 (±0.7)
• ICP-AES analysis on N. 3 aliquotes	Fe	7 (±3)
(1.5g each) digested under microwaves	Cr	<0.01
	Mn	0.06 (±0.02)
 High SD→heterogeneous material 	Pb	0.8 (±0.5)

Phase 2: Test specimen

Me	RAM #R#G#M	Reference sample		
		Ø = 0.4 mm		
	% <u>w/w</u>	% w/ <u>w</u>		
Au	0.08	0.01		
Cu	15	79		
Ag	0.04	0.06		
Ni	4	0.5		
Fe	7			
Cr	0.07	1 1		
Mn	0.06			
Pb	0.8	7		
Sn	n. a.	10		


RAM #R#G#M

- Coarse material
- Metallic fraction ~ 30% of the sample
- Presence of ferrous materials
- Presence of vitreousplatic material
- Low cost pre-treatments

Reference sample

- Thin powder material
- Deprived by non-metallic materials
- Deprived by ferrous materials
- More costly treatments and equipments

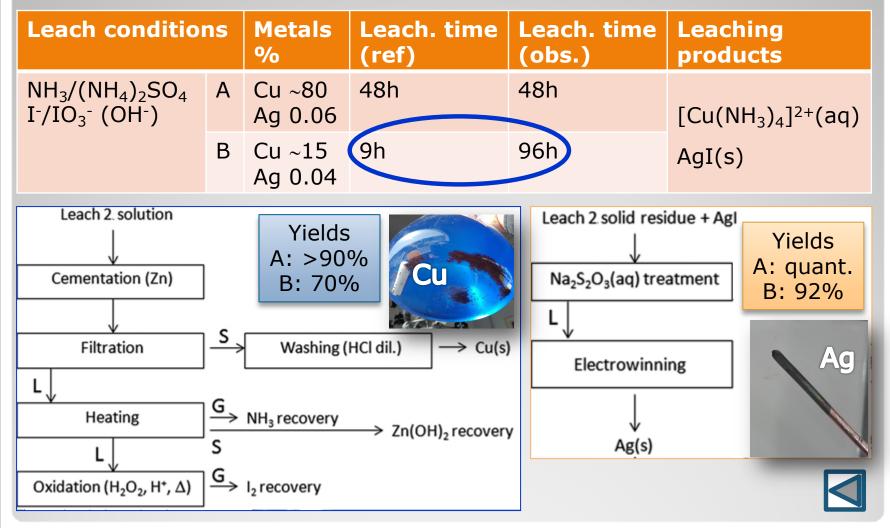
Reference *vs* **selected sample**

Phase 2: leaching & recovery

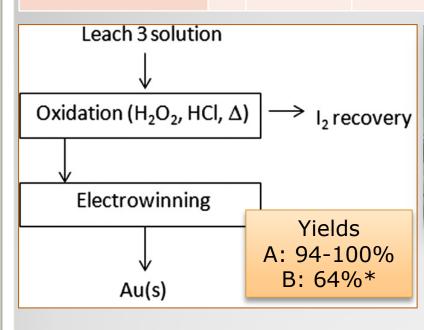
Base metal dissolution

Leach conditions		Base metals %	Leach. time (ref.)	Leach. time (obs.)	Dissolution Yield
Citric Acid 3M, Δ	A	~20	48h	48h	Almost quantitative
	В	~20	48h	48h	Almost quantitative (+25% Cu)

Sample A: Reference Sample B: RAM #R#G#M


Selecivity can be improved by tuning the leaching time and working under inert atmosphere (N_2)

Phase 2: Leach 1


Copper and silver dissolution and recovery

Phase 2: Leach 2

Gold dissolution and recovery

Leach conditions		Au %	Leach. time (ref)	Leach. time (obs.)	Leaching products
I ⁻ /I ₂ (aq) 5:1	А	0.01	30′	30′	
	В	0.08	30′	30′	[AuI ₄] ⁻ (aq)

*The solid residue contains the missing 36% of Au, 5% of Cu and a small amount of Ag.

Phase 2: Leach 3

- As expected, the effectiveness of the process is higher towards the sample A than B, thanks to its greater surface area and limited presence of interfering species.
- Nevertheless, the coarseness of the material does not seem jeopardize the process:
 - Leach 2 (Cu) was the most affected requiring leaching times 10-times longer than expected → gradual exposure of copper hidden by the vitreous-plastic support matrix.
 - A slight further effort in combining the pre-treatment set up with the subsequent leaching processes would help in obtaining the optimal conditions to meet the effectiveness and sustainability required for practical application.

Conclusions: leaching process

- Systematic characterization of the NM content in different typologies of PCB by quantitative chemical analysis.
- On the basis on the PCBs characterization and the described preliminary results, a scale-up of the process on a pilot scale (Phase 3) will be performed thanks to the #Recovery #Green #Metal project supported by companies through

the crowdfunding platform With**You**WeDo

Conclusions and perspectives

Research group

M. Colledani N. Picone

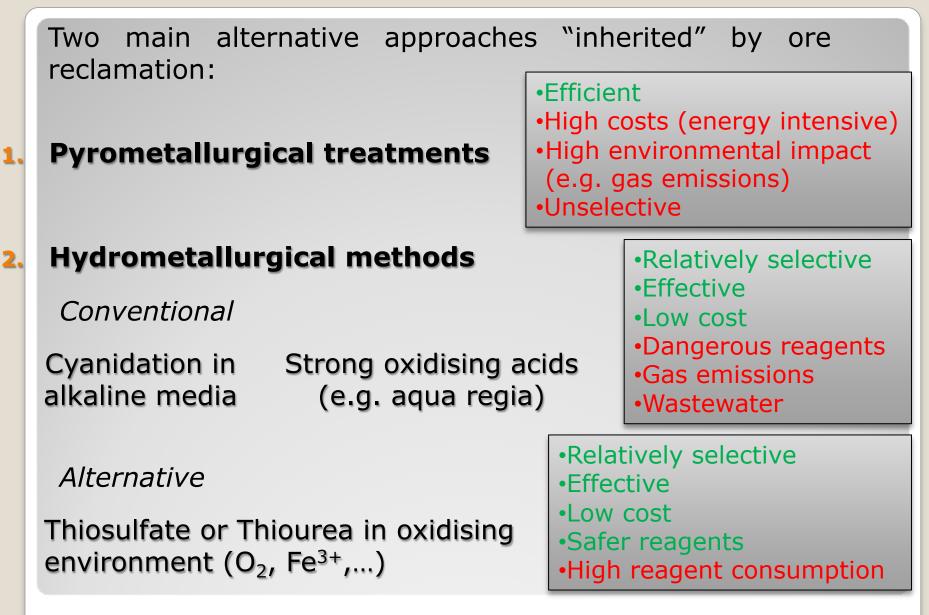
Paola Deplano Emanule F. Trogu Americo Rigoldi Flavia Artizzu Claudia Marras

Politecnico di Bari M. Dassisti

Co-founders #Recovery #Green #Metal

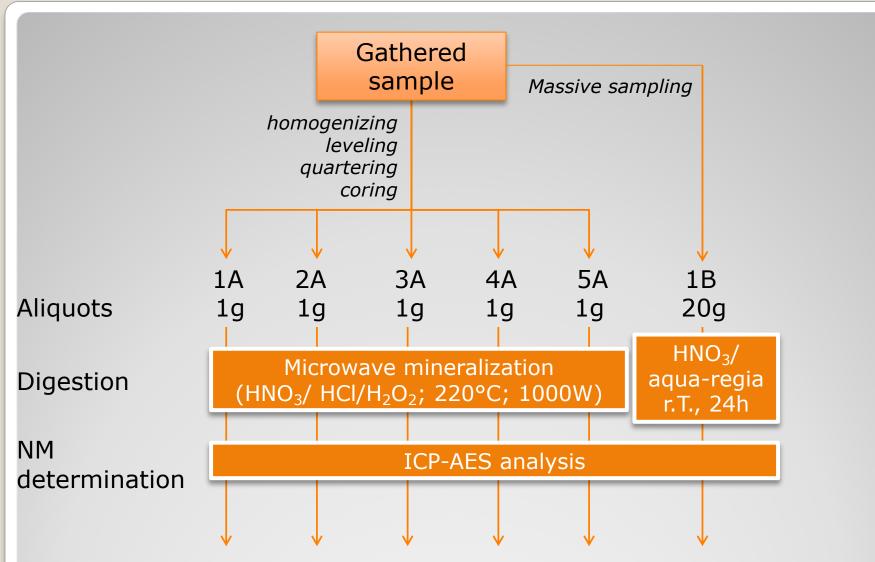
ECOCOPPER

TIM, Roma Gold fixing, Padova Valori e Preziosi, Padova Oro Market, Mestre (VE) Ri.Tech, Matera OMCD, Anzola d'Ossola (VB) Ecocopper, Carasco (GE) CO.RE.M., Sestu (CA)



RI.TECH Srl

VAL<mark>ORI</mark> € PREZI♥SI



Acknowledgements

Industrial methods for NM recovery

Sampling, digestion, ICP-AES analysis

CHARACTERIZATION OF PCBs